Convergence of Inner-Iteration GMRES Methods for Least Squares Problems

نویسندگان

  • Keiichi Morikuni
  • Ken Hayami
  • KEIICHI MORIKUNI
  • KEN HAYAMI
چکیده

We develop a general convergence theory for the generalized minimal residual method for least squares problems preconditioned with inner iterations. The inner iterations are performed by stationary iterative methods. We also present theoretical justifications for using specific inner iterations such as the Jacobi and SOR-type methods. The theory is improved particularly in the rankdeficient case. We analyse the spectrum of the preconditioned coefficient matrix, and characterize it by the spectral radius of the iteration matrix for the inner iterations. The analysis is supported by numerical experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TSIRM: A two-stage iteration with least-squares residual minimization algorithm to solve large sparse linear and nonlinear systems

In this paper, a two-stage iterative algorithm is proposed to improve the convergence of Krylov based iterative methods, typically those of GMRES variants. The principle of the proposed approach is to build an external iteration over the Krylov method, and to frequently store its current residual (at each GMRES restart for instance). After a given number of outer iterations, a least-squares min...

متن کامل

Morning Session I the Convergence of Restarted Gmres for Normal Matrices

Breakfast and Registration: 8:30 9:00 Morning Session I Room 1312 9:00 11:00 9:00 9:20 Eugene Vecharynski The Convergence of Restarted GMRES University of Colorado at Denver for Normal Matrices is Sublinear 9:25 9:45 Adrianna Gillman The Numerical Performace of a Mixed-Hybrid University of Colorado at Boulder Type Solution Methodology for Solving High-Frequency Helmholtz Problems 9:50 10:10 Sri...

متن کامل

Jacobian-Free Three-Level Trust Region Method for Nonlinear Least Squares Problems

Nonlinear least squares (NLS) problems arise in many applications. The common solvers require to compute and store the corresponding Jacobian matrix explicitly, which is too expensive for large problems. In this paper, we propose an effective Jacobian free method especially for large NLS problems because of the novel combination of using automatic differentiation for J(x)v and J (x)v along with...

متن کامل

GMRES Methods for Least Squares Problems

The standard iterative method for solving large sparse least squares problems min ∈Rn ‖ −A ‖2, A ∈ Rm×n is the CGLS method, or its stabilized version LSQR, which applies the (preconditioned) conjugate gradient method to the normal equation ATA = AT . In this paper, we will consider alternative methods using a matrix B ∈ Rn×m and applying the Generalized Minimal Residual (GMRES) method to min ∈R...

متن کامل

Preconditioned Krylov subspace methods for the solution of least-squares problems

and Kk(BA,Br) = span{Br, (BA)Br, . . . , (BA)k−1Br}, (3) where B ∈ Rn×m is the mapping and preconditioning matrix, and apply Krylov subspace iteration methods on these subspaces. For overdetermined problems, applying the standard CG method to Kk(BA,Br) leads to the preconditioned CGLS [3] or CGNR [9] method while for underdetermined problems it leads to preconditioned CGNE [9] method. The GMRES...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012